ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws
نویسندگان
چکیده
ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfaces. Currently available nonlinear ADER schemes are restricted to Cartesian meshes. This paper proposes an adaptive nonlinear finite volume ADER method on unstructured triangular meshes for scalar conservation laws, which works with WENO reconstruction. To this end, a customized stencil selection scheme is developed, and the flux evaluation of previous ADER schemes is extended to triangular meshes. Moreover, an a posteriori error indicator is used to design the required adaption rules for the dynamic modification of the triangular mesh during the simulation. The expected convergence orders of the proposed ADER method are confirmed by numerical experiments for linear and nonlinear scalar conservation laws. Finally, the good performance of the adaptive ADER method, in particular its robustness and its enhanced flexibility, is further supported by numerical results concerning Burgers equation.
منابع مشابه
Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملHigh-Order ADER Numerical Methods and Applications to Science and Engineering
s of presentations E. F. Toro Mathematical modelling, numerical simulation and high-order ADER schemes In this lecture I review some basic concepts regarding the mathematical modelling of processes in physics and other disciplines and their numerical simulation. There follows a discussion on the issue of high-order of accuracy of numerical methods, its misconceptions and eventual justification....
متن کاملAder Schemes for Scalar Hyperbolic Conservation Laws in Three Space Dimensions
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one, two and three space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obt...
متن کاملBenchmark of Ader Schemes in Multi-dimensinal Phenomena
The ADER approach is the extended Godunov-type schemes[1] which construct nonoscillatory explicit one-step schemes with very high order of accuracy in space and time by solving the DRPs (derivative Riemann problems). The ADER approach has been developed from the schemes for the linear scalar hyperbolic equations[2] to those for nonlinear multi-dimensional systems[3,4,5,6,7], and further to thos...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کامل